Rational Approximation with Varying Weights, II

E. A. Rakhmanov*

Department of Mathematics, University of South Florida, Tampa, Florida 33620 E-mail: rakhman@math.usf.edu

E. B. Saff*

Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, Florida 33620, E-mail:esaff@math.usf.edu

and

P C Simeonov[†]

Department of Mathematics, University of South Florida, Tampa, Florida 33620 E-mail:simeonov@math.usf.edu

Communicated by Vilmos Totik

Received August 19, 1996; accepted in revised form January 28, 1997

We consider two problems concerning uniform approximation by weighted rational functions $\{w^n r_n\}_{n=1}^\infty$, where $r_n = p_n/q_n$ has real coefficients, $\deg p_n \leqslant \lfloor \alpha n \rfloor$ and $\deg q_n \leqslant \lfloor \beta n \rfloor$, for given $\alpha > 0$ and $\beta \geqslant 0$. For $w(x) := e^x$ we show that on any interval $\lfloor 0, a \rfloor$ with $a \in (0, \hat{a}(\alpha, \beta))$, every real-valued function $f \in C(\lfloor 0, a \rfloor)$ is the uniform limit of some sequence $\{w^n r_n\}$. An implicit formula for $\hat{a}(\alpha, \beta)$ was given in the first part of this series of papers; in particular, $\hat{a}(1, 1) = 2\pi$. For $w(x) := x^\theta$ with $\theta > 1$ we show that uniform approximation of real-valued $f \in C(\lfloor b, 1 \rfloor)$ on $\lfloor b, 1 \rfloor$ by weighted rationals $w^n r_n$ is possible for any $b \in (\hat{b}(\theta; \alpha, \beta), 1)$, where $\hat{b}(\theta; \alpha, \beta)$ was also found in Part I; in particular, $\hat{b}(\theta; 1, 1) = \tan^4((\pi/4)((\theta-1)/\theta))$. Both of the mentioned results are sharp in the sense that approximation is no longer possible if \hat{a} is replaced by $\hat{a} + \varepsilon$ or \hat{b} is replaced by $\hat{b} - \varepsilon$ with $\varepsilon > 0$. We use potential theoretic methods to prove our theorems.

^{*} The research of these authors was supported, in part, by the National Science Foundation under Grant DMS 9501130.

[†] The research done by this author was in partial fulfillment of the Ph.D. Requirements at the University of South Florida.

1. INTRODUCTION AND MAIN RESULTS

1.1. Exponential Weight

We first consider the approximation problem for the weight $w(x) = e^x$. Let \mathscr{P}_m be the space of algebraic polynomials of degree at most m having complex coefficients. Let $\alpha, \beta \ge 0$ with $\alpha + \beta > 0$. Assume that for some a > 0 there are $p_n \in \mathscr{P}_{\lfloor \alpha n \rfloor}$ and $q_n \in \mathscr{P}_{\lfloor \beta n \rfloor}$, such that $e^{nx}p_n(x)/q_n(x) \to 1$, as $n \to \infty$, uniformly on [0, a]. Here and throughout the paper $[\cdot]$ denotes the greatest integer function. It was shown in [1, Theorem 3] that $a \le \hat{a} = \hat{a}(\alpha, \beta)$, where

$$\hat{a} = 2\pi\alpha,$$
 if $\alpha = \beta,$ (1.1)

$$\hat{a} = 2(\alpha - \beta)/(1 - 2\hat{y}), \quad \text{if} \quad \alpha \neq \beta,$$
 (1.2)

and $\hat{y} = \hat{y}(\alpha, \beta)$ is the root in [0, 1] of the equation

$$(y(1-y))^{1/2}/(1-2y) - \sin^{-1}\sqrt{y} = (\pi/2)(\beta/(\alpha-\beta)). \tag{1.3}$$

Thus uniform approximation of the constant function 1 by $\{e^{nx}p_n(x)/q_n(x)\}$ is not possible on any interval $[0,\hat{a}+\varepsilon]$, $\varepsilon>0$. The purpose of this paper is to prove, as claimed in [1], that such weighted rational approximation of the constant function 1 and, moreover, of any continuous function on the interval [0,a] with $a\in(0,\hat{a})$ is indeed possible.

THEOREM 1.1. Let $\alpha > 0$ and $\beta \ge 0$. For $a \in (0, \hat{a}(\alpha, \beta))$, where \hat{a} is defined in (1.1)–(1.3), every real-valued function $f \in C([0, a])$ is the uniform limit on [0, a] of a sequence of weighted real rational functions of the form $\{e^{nx}p_n(x)/q_n(x)\}$ with $p_n \in \mathcal{P}_{[\alpha n]}$ and $q_n \in \mathcal{P}_{[\beta n]}$.

If $\alpha = 0$, $\beta > 0$, and $a \in (0, \hat{a}(0, \beta))$, then $f \in C([0, a])$ is uniformly approximable on [0, a] by weighted real rationals $\{e^{nx}/q_n(x)\}$ with $q_n \in \mathcal{P}_{[\beta n]}$, if and only if f does not change sign on (0, a).

In the case $\alpha = \beta = 1$ we have $\hat{a}(\alpha, \beta) = 2\pi$, and so Theorem 1.1 and [1, Theorem 3] immediately yield the following.

COROLLARY 1.2. Let a^* be the supremum of all numbers a such that every real-valued $f \in C([0, a])$ is the uniform limit on [0, a] of weighted real rationals of the form $\{e^{nx}p_n(x)/q_n(x)\}$, where $p_n, q_n \in \mathcal{P}_n$. Then $a^* = 2\pi$.

Remark A. It was shown by P. C. Simeonov and V. Totik that in the case $\alpha = \beta = 1$, approximation of the constant function 1 is not possible on the whole interval $[0, \hat{a}]$, and A. B. J. Kuijlaars found a class of functions that are approximable on $[0, \hat{a}]$. These results will appear in another paper.

1.2. Incomplete Rational Functions

We next consider the approximation problem for the weight $w(x) = x^{\theta}$, where $\theta > 1$. Let $\alpha \geqslant 0$, $\beta \geqslant 0$, and $\alpha + \beta > 0$. Assume that for some $b \in (0, 1)$ there are $p_n \in \mathcal{P}_{[\alpha n]}$ and $q_n \in \mathcal{P}_{[\beta n]}$, such that $x^{n\theta}p_n(x)/q_n(x) \to 1$, as $n \to \infty$, uniformly on [b, 1]. It was shown in [1, Theorem 4] that $b \geqslant \hat{b} = \hat{b}(\theta; \alpha, \beta)$, where

$$\hat{b} = 0,$$
 if $\beta/\theta > 1,$ (1.4)

$$\hat{b} = \text{root of}$$
 $h(b) = 1 - \beta/\theta$, if $\beta/\theta \le 1$, (1.5)

where

$$h(b) = \frac{1}{\pi} \int_0^b \frac{\sqrt{(\xi - \sqrt{t})(1 - \xi \sqrt{t})}}{t^{3/4}(1 - t)} dt; \qquad \xi := 1 + \frac{\alpha}{\theta} - \frac{\beta}{\theta}. \tag{1.6}$$

Thus uniform approximation of the constant function 1 by $\{x^{n\theta}p_n(x)/q_n(x)\}$ is not possible on any interval $[\hat{b}-\varepsilon,1]$ with $\varepsilon>0$. Here we prove, as claimed in [1], that for any $f\in C([b,1])$ such weighted rational approximation on [b,1] is possible whenever $b\in (\hat{b},1)$.

Theorem 1.3. Let $\alpha > 0$, $\beta \geqslant 0$, and $\theta > 1$. Let $b \in (\hat{b}(\theta; \alpha, \beta), 1)$, where \hat{b} is defined in (1.4)–(1.6). Then every real-valued function $f \in C([b, 1])$ is the uniform limit on [b, 1] of a sequence of weighted real rational functions of the form $\{x^{n\theta}p_n(x)/q_n(x)\}$ with $p_n \in \mathcal{P}_{[\alpha n]}$ and $q_n \in \mathcal{P}_{[\beta n]}$.

If $\alpha = 0$, $\beta > 0$, and $b \in (\hat{b}(\theta; 0, \beta), 1)$, then $f \in C([b, 1])$ is uniformly

If $\alpha = 0$, $\beta > 0$, and $b \in (\hat{b}(\theta; 0, \beta), 1)$, then $f \in C([b, 1])$ is uniformly approximable on [b, 1] by weighted real rationals $\{x^{n\theta}/q_n(x)\}$, $q_n \in \mathcal{P}_{[\beta n]}$, if and only if f does not change sign on (b, 1).

In the case $\alpha = \beta = 1$ we have $\hat{b}(\theta; 1, 1) = \tan^4((\pi/4)((\theta - 1)/\theta))$ and so by Theorem 1.3 and [1, Theorem 4] we obtain the following.

COROLLARY 1.4. Let b^* be the infimum of all numbers $b \in (0, 1)$ such that every real-valued function $f \in C([b, 1])$ is the uniform limit on [b, 1] of a sequence of weighted real rational functions $\{x^{n\theta}p_n(x)/q_n(x)\}$, with $\theta > 1$ and $p_n, q_n \in \mathcal{P}_n$. Then $b^* = \tan^4((\pi/4)((\theta-1)/\theta))$.

Remark B. Concerning approximation by incomplete rationals of the form $x^{n\theta}p_n(x)/q_n(x)$, $p_n\in\mathscr{P}_{[\alpha n]}$, $q_n\in\mathscr{P}_{[\beta n]}$ we do not know the class of functions for which uniform convergence on $[\hat{b},1]$ is possible. For the special case of incomplete polynomial approximation $(\alpha=1,\beta=0)$ we have $\hat{b}=\hat{b}(\theta;1,0)=(\theta/(1+\theta))^2$ and it has been shown by A. B. J. Kuijlaars (see [2, Theorem 1.2]) that a necessary and sufficient condition for $f\in C([\hat{b},1])$ to be approximable is that $f(\hat{b})=0$.

1.3. The Main Approximation Theorem

Theorems 1.1 and 1.3 are consequences of the following result which concerns logarithmic potentials. For a finite Borel measure μ with compact support we denote by $V(z, \mu)$ its logarithmic potential

$$V(z,\mu) := \int \log \frac{1}{|z-t|} d\mu(t).$$

For a positive Borel measure μ , the total mass of μ is denoted by $\|\mu\|$.

THEOREM 1.5. Let $[a, b] \subset \mathbf{R}$ be a finite interval and $w: [a, b] \to [0, \infty)$ be a weight such that

$$w(u) = \exp(V(u, \mu^{+}) - V(u, \mu^{-}) + F), \tag{1.7}$$

where F is a constant and $\mu^{\pm} = s^{\pm}(t)$ dt are absolutely continuous measures whose densities s^{\pm} are nonnegative and continuous on (a,b) and satisfy at each endpoint $c \in \{a,b\}$, $s^{+}(t) | t-c|^{1/2} \rightarrow l_c^{+}(<\infty)$ as $t \rightarrow c$, $t \in (a,b)$, and the same holds for s^{-} . Then for each $\alpha > \|\mu^{+}\|$ and $\beta > \|\mu^{-}\|$, every real-valued function $f \in C([a,b])$ is uniformly approximable on [a,b] by weighted real rationals of the form $w^n p_n/q_n$, with $p_n \in \mathcal{P}_{f,\alpha n}$ and $q_n \in \mathcal{P}_{f,\beta n}$.

If $\|\mu^-\| = 0$, then the last statement is also true for $\beta = 0$.

If $\|\mu^+\| = 0$, then $f \in C([a,b])$ is uniformly approximable by weighted real rationals of the form w^n/q_n with $q_n \in \mathcal{P}_{\lfloor \beta n \rfloor}$, $\beta > \|\mu^-\|$, if and only if f does not change sign on (a,b). The latter condition on f can be removed if the $q_n \in \mathcal{P}_{\lfloor \beta n \rfloor}$ are allowed to have complex coefficients.

2. PROOFS OF THE THEOREMS

First we will prove Theorem 1.5 and then use it to establish Theorems 1.1 and 1.3.

2.1. Proof of Theorem 1.5

For the proof we need the following lemma which easily follows from results of Totik [4] and Kuijlaars [2] (see also [3, Chapter VI]) regarding weighted polynomial approximation with varying weights.

LEMMA 2.1. Suppose $w(x) = C \exp(V(x, \mu))$, $x \in [a, b]$, where μ is a positive measure on [a, b] of total mass $\|\mu\| > 0$ and has the form

$$d\mu(t) = \frac{v(t)}{\sqrt{(t-a)(b-t)}} dt, \qquad t \in [a, b],$$

where v is positive and continuous on [a, b]. Then every real-valued $f \in C([a, b])$ is uniformly approximable on [a, b] by weighted polynomials $w^n p_n$ with $p_n \in \mathcal{P}_{[\parallel \mu \parallel n]}$.

Proof. With the transformation used by A. B. J. Kuijlaars (see [2, p. 298]) we turn each endpoint into an interior point. Then we apply Theorem 4.2 from [4] to the transformed weight for which the extremal measure has continuous density at the transformed point and use the inverse transformation to complete the proof of the lemma. ■

Proof of Theorem 1.5. First let $\alpha > \|\mu^+\|$, $\beta > \|\mu^-\|$, and $f \in C([a, b])$ be real-valued. We assume, without loss of generality, that [a, b] = [0, 1]. Let

$$v(t) dt := \frac{dt}{\pi \sqrt{t(1-t)}}, \qquad t \in [0, 1]$$

denote the equilibrium distribution for the interval [0,1] and choose a number $\gamma \in (0, \min(\alpha - \|\mu^+\|, \beta - \|\mu^-\|))$. We consider the measures v^\pm defined by $dv^\pm(t) = v^\pm(t) \, dt$, $t \in [0,1]$, where $v^\pm(t) := s^\pm(t) + \gamma v(t)$. Then $v^\pm(t) > 0$ on (0,1) and, at each endpoint $c \in \{0,1\}$, we have $v^\pm(t) \mid t-c \mid^{1/2} \to l_c^\pm + \gamma/\pi > 0$ as $t \to c$, $t \in (0,1)$. Furthermore $\|v^+\| < \alpha$ and $\|v^-\| < \beta$ by the choice of γ . Next we define the weights

$$w^{\pm}(u) := e^{V(u, v^{\pm}/\|v^{\pm}\|)}, u \in [0, 1].$$

By Lemma 2.1 there exist $\tilde{p}_n \in \mathscr{P}_n$ and $\tilde{q}_n \in \mathscr{P}_n$ such that

$$w^+(u)^n \tilde{p}_n(u) \rightarrow f(u)$$
 and $w^-(u)^n \tilde{q}_n(u) \rightarrow 1$,

as $n \to \infty$, uniformly on [0, 1]; that is,

$$e^{(n/\|v^+\|) V(u, v^+)} \tilde{p}_n(u) \to f(u),$$
 (2.1)

$$e^{(n/\|v^-\|) V(u, v^-)} \tilde{q}_n(u) \to 1.$$
 (2.2)

We can write (2.1) and (2.2) in the forms

$$e^{(nV(u, v^+) + ([n ||v^+||]/||v^+||-n) |V(u, v^+))} \tilde{p}_{[n ||v^+||]}(u) \to f(u), \tag{2.3}$$

$$e^{(nV(u, v^{-}) + ([n ||v^{-}||]/||v^{-}|| - n) V(u, v^{-}))} \tilde{q}_{[n ||v^{-}||]}(u) \to 1, \tag{2.4}$$

as $n \to \infty$, uniformly on [0, 1]. Since the sets $\{e^{\tau V(u, v^{\pm})} : \tau \in [0, \|v^{\pm}\|^{-1}]\}$ are compact subsets of C([0, 1]), there are polynomials $r_n \in \mathscr{P}_{[\alpha n] - [n \|v^{+}\|]}$ and $s_n \in \mathscr{P}_{[\beta n] - [n \|v^{-}\|]}$ such that

$$r_n(u) e^{(n - [n | v^+|]/||v^+||) V(u, v^+)} \to 1,$$
 (2.5)

$$s_n(u) e^{(n-[n \|v^-\|]/\|v^-\|) V(u, v^-)} \to 1,$$
 (2.6)

as $n \to \infty$, uniformly on [0, 1]. Next from (2.3)–(2.6) it follows that

$$p_n := e^{-nF} \tilde{p}_{\lceil n \parallel v^+ \parallel \rceil} r_n \in \mathscr{P}_{\lceil \alpha n \rceil} \quad \text{and} \quad q_n := \tilde{q}_{\lceil n \parallel v^- \parallel \rceil} s_n \in \mathscr{P}_{\lceil \beta n \rceil},$$

satisfy

$$e^{nV(u, v^+)}e^{nF}p_n(u) \to f(u), \qquad e^{nV(u, v^-)}q_n(u) \to 1,$$
 (2.7)

as $n \to \infty$, uniformly on [0, 1], where *F* is the constant appearing in (1.7). Then from (2.7) and the relation $v^+ - v^- = \mu^+ - \mu^-$ it follows that

$$w(u)^{n} \frac{p_{n}(u)}{q_{n}(u)} = e^{nV(u, \mu^{+} - \mu^{-})} e^{nF} \frac{p_{n}(u)}{q_{n}(u)} = \frac{e^{nV(u, \nu^{+})} e^{nF} p_{n}(u)}{e^{nV(u, \nu^{-})} q_{n}(u)}$$
$$= f(u) + o(1),$$

as $n \to \infty$, uniformly on [0, 1].

Next, suppose that $\alpha > \|\mu^+\|$ and $\beta = \|\mu^-\| = 0$. Choose a number $\lambda \in (0,1)$ so that $\|\mu^+\| + (1-\lambda)/\lambda < \alpha$, and consider the weight $w(u)^{\lambda} = 4^{\lambda-1} \exp(V(u,\mu_{\lambda}) + \lambda F)$, $u \in [0,1]$, where $\mu_{\lambda} := \lambda \mu^+ + (1-\lambda) v \, dt$. Then μ_{λ} satisfies the conditions of Lemma 2.1; hence every real-valued $f \in C([0,1])$ is uniformly approximable on [0,1] by weighted polynomials $w^{\lambda n}p_n$ with $p_n \in \mathscr{P}_{[\|\mu_{\lambda}\|\|n]}$. By the choice of λ we have $\|\mu_{\lambda}\|/\lambda < \alpha$. Using an argument like that for (2.3)–(2.7) one can show that every such f is uniformly approximable on [0,1] by w^np_n with $p_n \in \mathscr{P}_{[\pi n]}$.

Finally, suppose that $\alpha = \|\mu^+\| = 0$. It is obvious that uniform approximation of $f \in C([0,1])$ on [0,1] by weighted real rationals of the form w^n/q_n , $q_n \in \mathscr{P}_{[\beta n]}$, is not possible if f changes sign on (0,1). So let $f \in C([0,1])$ be nonnegative on [0,1]. Define $f_k(u) := f(u) + k^{-1}$ for $k \in \mathbb{N}$. By what we have already proved in the previous case, it follows that for every $k \in \mathbb{N}$ there is a sequence of real polynomials $\{p_{n,k} \in \mathscr{P}_{[\beta n]}\}_{n \in \mathbb{N}}$ such that $(w^{-1})^n p_{n,k} \to f_k^{-1}$, as $n \to \infty$, uniformly on [0,1]. Now we define the sequence $\{n_k\}$ as follows: $n_1 = 1$, and for $k \ge 2$, $n_k > n_{k-1}$ is chosen so that for $n \ge n_k$

$$|(w(u)^{-1})^n p_{n,k}(u) - f_k(u)^{-1}| < k^{-2}, u \in [0, 1].$$

Then the polynomials $q_n := p_{n,k}$ for $n \in \{n_k, ..., n_{k+1} - 1\}$ and $k \in \mathbb{N}$ satisfy $w(u)^n/q_n(u) \to f(u)$, as $n \to \infty$, uniformly on [0, 1].

Now let $f \in C([0,1])$ be an arbitrary real-valued function. For $k \in \mathbb{N}$ we define the complex-valued function $f_k := f + ik^{-1}$. Then $|f_k| \ge k^{-1}$

on [0, 1]. As we have already shown, for every $k \in \mathbb{N}$ there are real polynomials $p_{n,k,r}$ and $p_{n,k,i} \in \mathscr{P}_{\lceil \beta n \rceil}$ such that

$$(w^{-1})^n p_{n,k,r} \to \text{Re}(f_k^{-1})$$
 and $(w^{-1})^n p_{n,k,i} \to \text{Im}(f_k^{-1}),$

as $n \to \infty$, uniformly on [0, 1]. Then, as above, it follows that for a suitable choice of indices, the sequence $\{w^n/(p_{n,k,r}+ip_{n,k,i})\}$ tends to f uniformly on [0, 1].

2.2. Proofs of Theorems 1.1 and 1.3

Proof of Theorem 1.1. Let $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta > 0$. For fixed a > 0 and $x \in \mathbb{R}$ we define the function

$$\sigma(t,x) := \frac{a-t-x}{\pi\sqrt{t(a-t)}}, \qquad t \in [0,a],$$

and let $\sigma(t, x) = \sigma^+(t, x) - \sigma^-(t, x)$ be its Jordan decomposition on [0, a]. We set $p(x, a) = \|\sigma^+(t, x)\|$ and $n(x, a) = \|\sigma^-(t, x)\|$. By (2.2)–(2.3) in [1] we also have

$$e^u = \exp(V(u, -\sigma(t, x) dt) + \text{const}), \quad u \in [0, a].$$

First let $\alpha > 0$ and $\beta > 0$. It follows from (1.1)–(1.3) that $\hat{a}(\alpha, \beta)$ is a continuous function of α and β . Thus if $a < \hat{a}(\alpha, \beta)$ there is some $\varepsilon > 0$ such that $a < \hat{a}(\alpha - \varepsilon, \beta - \varepsilon)$. Then by Lemmas 7 and 9 in [1] there is an \bar{x} such that $p(\bar{x}, a) < \beta$ and $n(\bar{x}, a) < \alpha$. Hence Theorem 1.1 follows from Theorem 1.5 with $s^{\pm}(t) = \sigma^{\mp}(t, \bar{x})$.

If $\beta = 0$, then $\hat{a}(\alpha, 0) = 2\alpha$ by (1.3) and in this case Theorem 1.1 again follows from Theorem 1.5 with $w(u) = e^u = C \exp(V(u, -\sigma(t, 0) dt)), u \in [0, a]$, and the fact that $\|\sigma(t, 0)\| = a/2 < \alpha$ for $a \in (0, \hat{a}(\alpha, 0))$.

Finally if $\alpha = 0$ and $\beta > 0$, the last assertion of Theorem 1.1 follows in a similar fashion from Theorem 1.5.

Proof of Theorem 1.3. Let $\theta > 1$, $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta > 0$. As in [1], for fixed $b \in (0, 1)$ and $x \in \mathbf{R}$ we define the function

$$\tilde{\sigma}(t,x) := \frac{(\sqrt{b}/t - x)}{\pi \sqrt{(t-b)(1-t)}}, \qquad t \in [b,1].$$

Let $\tilde{\sigma}(t, x) = \tilde{\sigma}^+(t, x) - \tilde{\sigma}^-(t, x)$ be the Jordan decomposition of the measure $\tilde{\sigma}(t, x) dt$ in [b, 1] and set

$$p(x, b) := \|\tilde{\sigma}^+(t, x)\|$$
 and $n(x, b) := \|\tilde{\sigma}^-(t, x)\|$.

By (3.1)–(3.5) in [1] we have

$$u^{\theta} = \exp(V(u, -\theta \tilde{\sigma}(t, x) dt) + \text{const}), \quad u \in [b, 1].$$

Assume first that $\alpha > 0$ and $\beta > 0$. From Lemmas 11 and 12 in [1] it follows that for $b \in (\hat{b}(\theta; \alpha, \beta), 1)$ there exists an $x \in (\sqrt{b}, 1/\sqrt{b})$ such that $p(x, b) < \beta/\theta$ and $n(x, b) < \alpha/\theta$. Then Theorem 1.3 follows from Theorem 1.5 with $s^{\pm}(t) = \theta \sigma^{\mp}(t, x)$.

Next assume that $\beta = 0$. By Lemma 12 in [1], $\hat{b}(\theta; \alpha, 0) = (1 + \alpha/\theta)^{-2}$. Let $b \in (\hat{b}, 1)$. Then $\alpha + \theta > \theta/\sqrt{b}$ and for fixed $x \in [\theta/\sqrt{b}, \alpha + \theta)$, the function

$$s(t) := -\theta \tilde{\sigma}(t, x/\theta), \quad t \in [b, 1]$$

is nonnegative on [b, 1], satisfies $\int_b^1 s(t) dt = x - \theta < \alpha$, and so Theorem 1.3 again follows from Theorem 1.5 with $s^+(t) = s(t)$, $s^-(t) = 0$.

Finally if $\alpha = 0$ and $\beta > 0$, the last assertion of Theorem 1.3 follows in a similar fashion from Theorem 1.5.

ACKNOWLEDGMENTS

The authors are grateful for helpful suggestions from V. Totik and A. B. J. Kuijlaars.

REFERENCES

- P. Borwein, E. A. Rakhmanov, and E. B. Saff, Weighted rational approximation with varying weights, I, Constr. Approx. 2 (1996), 223–240.
- A. B. J. Kuijlaars, The role of the endpoint in weighted polynomial approximation with varying weights, Constr. Approx. 2 (1996), 287–301.
- E. B. Saff and V. Totik, "Logarithmic Potentials with External Fields," Grundlehren der mathematischen Wissenschaften, Vol. 316, Springer-Verlag, Heidelberg, 1997.
- V. Totik, "Weighted Polynomial Approximation with Varying Weights," Lecture Notes in Math., Vol. 1569, Springer-Verlag, Berlin, 1994.